A stochastic evolutionary growth model for social networks

نویسندگان

  • Trevor I. Fenner
  • Mark Levene
  • George Loizou
  • George Roussos
چکیده

We present a stochastic model for a social network, where new actors may join the network, existing actors may become inactive and, at a later stage, reactivate themselves. Our model captures the evolution of the network, assuming that actors attain new relations or become active according to the preferential attachment rule. We derive the mean-field equations for this stochastic model and show that, asymptotically, the distribution of actors obeys a power-law distribution. In particular, the model applies to social networks such as wireless local area networks, where users connect to access-points, and peer-to-peer networks where users connect to each other. As a proof of concept, we demonstrate the validity of our model empirically by analysing a public log containing traces from a wireless network at Dartmouth College over a period of three years. Analysing the data processed according to our model, we demonstrate that the distribution of user accesses is asymptotically a power-law distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms

Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...

متن کامل

A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff

Recently several authors have proposed stochastic evolutionary models for the growth of complex networks that give rise to power-law distributions. These models are based on the notion of preferential attachment leading to the “rich get richer” phenomenon. Despite the generality of the proposed stochastic models, there are still some unexplained phenomena, which may arise due to the limited siz...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

Large deviation principles for empirical measures of the multitype random networks

In this article we study the stochastic block model also known as the multi-type random networks (MRNs). For the stochastic block model or the MRNs we define the empirical group measure, empirical cooperative measure and the empirical locality measure. We derive large deviation principles for the empirical measures in the weak topology. These results will form the basis of understanding asympto...

متن کامل

A Robust Reliable Forward-reverse Supply Chain Network Design Model under Parameter and Disruption Uncertainties

Social responsibility is a key factor that could result in success and achieving great benefits for supply chains. Responsiveness and reliability are important social responsibility measures for consumers and all stakeholders that strategists and company managers should be concerned about them in long-term planning horizon. Although, presence of uncertainties as an intrinsic part of supply chai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Networks

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007